Efficient low-power photon upconversion in core/shell heterostructured semiconductor nanowires

Author:

Jansson Mattias,Ishikawa Fumitaro,Chen Weimin M.,Buyanova Irina A.

Abstract

Photon energy upconversion, i.e. the conversion of several low-energy photons to a photon of higher energy, offers significant potential for nano-optoelectronics and nanophotonics applications. The primary challenge is to achieve high upconversion efficiency and a broad device performance range, enabling effective upconversion even at low excitation power. This study demonstrates that core/shell semiconductor nanowire heterostructures can exhibit upconversion efficiencies exceeding what was previously reported for semiconductor nanostructures even at a low excitation power of 100 mW/cm2, by a two-photon absorption process through conduction band states of the narrow-bandgap nanowire shell region. By engineering the electric-field distribution of the excitation light inside the NWs, upconversion efficiency can be further improved by eight times. This work showcases the effectiveness of the proposed approach in achieving efficient photon upconversion using core/shell NW heterostructures, resulting in some of the highest upconversion efficiencies reported in semiconductor nanostructures. Additionally, it offers design guidelines for enhancing energy upconversion efficiency.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3