Large period spiking andburstingin anexcitable system with memory

Author:

Braeckeveldt Bertrand,Peters Kevin,Verdonschot Bart,Rodriguez Said,Maes Bjorn

Abstract

Excitability in dynamical systems refers to the ability to transition from a resting stationary state to a spiking state when a parameter is varied. It is the mechanism behind spike generation in neurons. Optical non-linear resonators can be excitable systems, but they usually present a fast response compared to neuronal systems, and they prove difficult to observe experimentally. We propose investigating optical resonators with delayed Kerr effects, specifically in two different geometries: an oil-filled single-mode cavity with thermo-optical nonlinearity, and two coupled, symmetrically driven cavities. When the Kerr effect is delayed, even a single cavity exhibits excitability. However, we show that it suffers from limitations on the thermo-optical relaxation time in order to be realized experimentally. We overcome these limitations using the geometry with coupled cavities, where the thermo-optical relaxation time acts as a memory. This slow variable enables to tailor the spiking frequency and it mimics neuronal behaviours by enabling large-period spiking.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3