Development of flexible polishing tools for synchro-speed polishing processes using additive manufacturing

Author:

Schulze Christian,Henkel Sebastian,Bliedtner Jens,Fähnle Oliver,Kern Kerstin,Allaart Jan,Surberg Henrik,Bode Jürgen,Rädlein Edda

Abstract

A new concept for synchro-speed polishing of flat and spherical surfaces is introduced: 3D printed gradient index (GRIN) polishing tools. By using additive manufacturing technologies in combination with photopolymer plastics, GRIN tools can be fabricated that are individually adapted to the workpiece geometry. By using two different plastics, the hardness and therefore the removal rate of certain tool areas can be defined. Surface structures, benefiting material removal rate and tool wear rate, are possible as well as lightweight structures with high mechanically stability. Tools can be fabricated as thin foils as well as solid pads, ranging from small (few mm) to large diameters. Additionally, the pads can be fabricated with an individual radius. This can enable the replacement of radius-dependent tool holders, because the pads can be mounted on flat tool interfaces, since the radius is not dependent from the tool body anymore. First results from the experimental setup are showing, that by using GRIN foils similar surface quality results can be achieved in comparison to conventional polyurethane foils, while the GRIN foils are offering a lot more possibilities regarding process optimization.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3