Author:
Nifontova Galina,Gerasimovich Evgeniia,Fleury Fabrice,Sukhanova Alyona,Nabiev Igor
Abstract
Sensors based on photonic crystal (PC) surface mode imaging are promising tools for label-free drug screening and discovery, diagnostics, and analysis of ligand–receptor interactions. Imaging of PC surface modes has been demonstrated to allow simultaneous real-time detection of multiple events at the sensor surface. Here, we report the engineering of a lateral-flow microfluidic assay where PC surface mode imaging is used for multiplexed detection of biomolecular targets (antibodies, oligonucleotides, and a DNA repair protein), as well as kinetic data on their interactions obtained without additional labelling or signal amplification. Our data demonstrate the suitability of the biosensing platform designed for ultrasensitive, quick, and low-cost detection and monitoring of interactions between different biomolecules.