Author:
Ferrando Giulio,Gardella Matteo,Zambito Giorgio,Barelli Matteo,Chowdhury Debasree,Giordano Maria Caterina,de Mongeot Francesco Buatier
Abstract
Header Two-dimensional (2D) Transition Metal Dichalcogenide semiconductors (TMDs) are a promising platform in view of developing a novel generation of optoelectronics devices and renewable photon to energy conversion technologies. However new ultra-compact photon harvesting schemes are urgently required to mitigate their poor photon absorption properties. In this work we propose a novel flat-optic solution where a few layers MoS2 film is conformally deposited on a large area (cm2) nanogrooved template. The subwavelength reshaping of the TMDs film induces the excitation of photonic Rayleigh Anomalies (RA). The latter promote a strong in-plane electromagnetic confinement and can be easily tuned over a broadband spectrum by tailoring the illumination conditions. As a demonstration of the potential of this large-area surface functionalization we employed the hybrid 2D nanopatterns as a photocatalyst in a prototype photobleaching reaction of Methylene Blue (MB) molecules. We demonstrate a strong enhancement of the photochemical MB degradation, well above a factor 2, by effectively tuning the RA mode in resonance to the molecular absorption band. Therefore, these findings pave the way to flat-optics photon harvesting schemes for boosting photoconversion efficiency in large-scale hybrid 2D-TMD/polymer layers, with a strong impact in applications ranging from waste-water remediation to new-generation photonics and renewable energy storage