Description of weak-interaction rates within the relativistic energy density functional theory

Author:

Ravlić Ante,Yüksel Esra,Niu Yifei,Paar Nils,Colò Gianluca,Khan Elias

Abstract

A new theoretical framework has been established and applied in the calculation of electron capture (EC) and β-decay rates in stellar environment, characterized by high density and temperature. For the description of the nuclear properties, the finite-temperature Hartree Bardeen-Cooper-Schrie_er (FTHBCS) theory based on the relativistic derivative-coupling D3C* interaction is employed. In order to describe the charge-exchange transitions, the finitetemperature proton-neutron quasi-particle random-phase approximation is developed (FT-PNRQRPA) which includes both temperature and pairing correlations. In the FT-HBCS calculations, only the isovector pairing is included, while in the residual interaction of the FT-PNRQRPA both the isovector and isoscalar pairing contribute. In this work, results for EC and β-decay rates are presented in the temperature interval T = 0–1.5 MeV and stellar density ρYe = 107 and 109 g/cm3. Both allowed 0+, 1+ and first-forbidden transitions 0, 1 and 2 are included in the calculations. It is shown that interplay between pairing correlations and finite-temperature effects can lead to significant changes in rates. It is also important to include de-excitations, i.e. transitions with negative Q-value, that become increasingly significant at higher temperatures especially for p f -shell nuclei.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3