Massive first star binaries as new tools for Galactic archaeology

Author:

Suda Takuma,Saitoh Takayuki R.,Moritani Yuki,Matsuno Tadafumi,Shigeyama Toshikazu

Abstract

Binary systems are important probes of the origin of stars with peculiar chemical features through the interactions between two stars. We have studied the evolution of a metal-free massive binary after the collision of the supernova ejecta with a low-mass companion. Theoretical models are developed using simulations of binaries after core-collapse supernovae using stellar evolution models, supernova ejecta models, and hydrodynamic simulations of the system consisting of supernova ejecta and companion stars. We find that these first star survivors will be observed as metal-rich halo stars in our Galaxy. In combination with the theoretical research, we looked for observational counterparts in the Galactic halo using the observational database where elemental abundances and kinematic data are available. We have also searched for the progenitor binary systems based on radial velocity monitoring. We report the current status of the search for massive binaries in the solar vicinity. The proposed scenario demands a new channel of star formation in the early universe and is a supplementary scenario for the origin of the known metal-poor stars.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3