Author:
Brückner Benjamin,Erbacher Philipp,Göbel Kathrin,Heftrich Tanja,Khasawneh Kafa,Kurtulgil Deniz,Langer Christoph,Nolte Ralf,Reich Markus,Reifarth René,Thomas Benedikt,Weigand Mario,Wiescher Michael,Volknandt Meiko
Abstract
The neutron activation method is well-suited to investigate neutron-capture cross sections relevant for the main s-process component. Neutrons can be produced via the 7Li(p,n) reaction with proton energies of 1912 keV at e.g. Van de Graaff accelerators, which results in a quasi-Maxwellian spectrum of neutrons corresponding to a temperature of kBT = 25 keV. However, the weak s-process takes place in massive stars at temperatures between 25 and 90 keV. Simulations using the PINO code [2] suggest that a Maxwellian spectrum for higher energies, e.g. kBT = 90 keV, can be approximated by a linear combination of different neutron spectra. To validate the PINO code at proton energies Ep ≠ 1912 keV, neutron time-of-flight measurements were carried out at the PTB Ion Accelerator Facility (PIAF) at the Physikalisch-Technische Bundesanstalt in Braunschweig, Germany.