Midrapidity cluster formation in heavy-ion collisions

Author:

Bratkovskaya Elena,Glässel Susanne,Kireyeu Viktar,Aichelin Jörg,Bleicher Marcus,Blume Christoph,Coci Gabriele,Kolesnikov Vadim,Steinheimer Jan,Voronyuk Vadim

Abstract

We study the production of clusters and hypernuclei at midrapidity employing the Parton-Hadron- Quantum-Molecular-Dynamics (PHQMD) approach, a microscopic n-body transport model based on the QMD propagation of the baryonic degrees of freedom with density dependent 2-body potential interactions. In PHQMD the cluster formation occurs dynamically, caused by the interactions. The clusters are recognized by the Minimum Spanning Tree (MST) algorithm. We present the PHQMD results for cluster and hypernuclei formation in comparison with the available experimental data at relativistic energies. PHQMD allows to study the time evolution of formed clusters and the origin of their production, which helps to understand how such weakly bound objects are formed and survive in the rather dense and hot environment created in heavy-ion collisions. It offers therefore an explanation of the ’ice in the fire’ puzzle. To investigate whether this explanation of the ’ice in the fire’ puzzle applies only to the MST results we study also the deuterons production by coalescence. We embed MST and coalescence in the PHQMD and UrQMD transport approaches in order to obtain model independent results. We find that both clustering procedures give very similar results for the deuteron observables in the UrQMD as well as in the PHQMD environment. This confirms that our solution for the ’ice in the fire’ puzzle is common to MST and coalescence and independent of the transport approach.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3