Operational domain for the new 3MW/1000s ECRH System on WEST

Author:

Fonghetti T.,Dumont R.,Giruzzi G.,Artaud J.-F.,Bernard J.-M.,Bouquey F.,Bourdelle C.,Delpech L.,Hillairet J.,Maget P.,Manas P.,Mollard P.,Morales J.,Ostuni V.,Robinet B.,

Abstract

The ECRH system formerly used in Tore Supra is being upgraded to start on WEST in 2023, at a power level of 1MW and frequency of 105 GHz. Its ultimate 3MW/1000s capability is expected to enlarge the WEST operational domain by increasing margins with respect to H-mode access, and by providing additional flexibility in terms of achievable scenarios using impurity and/or MHD control. This flexibility is made possible using an antenna based on three steerable mirrors for controlled power injection. In order to determine an appropriate range of EC wave injection angles for WEST scenarios, the fast and reliable ray-tracing code REMA has been interfaced with the WEST IMAS database. This allows the EC power damping rate to be quickly assessed, as well as deposition profiles to be predicted in realistic plasma conditions. Based on a typical WEST discharge at central magnetic field B0~3.6 T, central line-averaged electron density nl~4 × 1019 m−3 and central electron temperature Te0~3keV, ray-tracing calculations have been performed. Comprehensive poloidal and toroidal angle scans, as well as variations of Bt, nl and Te0 with respect to the reference parameters have allowed an adequate range of injection angles to be determined for efficient use of ECRH and/or ECCD in typical WEST scenarios, and compared with the mechanical limits set by the antenna mechanical characteristics. In order to further characterize the effect of this new power source in WEST scenarios, EC wave deposition and current profiles from ray-tracing calculations have been included in integrated simulation codes. It has been shown that this additional power source could allow central electron heating to be achieved, potentially alleviating the issue of radiative collapse caused by impurities observed in some situations.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3