Design of Stray Radiation Sensor for ITER ECE Diagnostic

Author:

Danani S.,Punia Sheetal,Kumar Ravinder,Pandya Hitesh Kumar B.,Kumar Vinay

Abstract

The Electron Cyclotron Emission (ECE) diagnostic has a primary role in the measurement of electron temperature profile and electron temperature fluctuations in ITER. This diagnostic shall be exposed to significant power due to unabsorbed Electron Cyclotron Heating (ECH) power in the plasma. The expected stray power loads could be a few tens of watts, and therefore, the protection of millimetre wave components is one of the design challenges of ITER ECE diagnostic. This protection system includes sensors, a band stop notch filter, and a shutter to stop the RF stray radiation from being incident on the sensitive components. The sensors will be positioned along the ECE transmission line, and shall be used for real-time power monitoring of the stray radiation. Here, we describe a novel design of a sensor for monitoring the stray radiation power. This sensor is a Schottky Diode rectenna, known for high-power and high-speed millimetre wave detection capability. It consists of a 2x2 microstrip patch antenna array, a matching circuit, a diode, and a low pass filter. The antenna array is designed analytically and optimized in CST Microwave Studio, for wide reception angle, high gain, and low side lobe levels. Furthermore, the rectifying circuit is optimized using Agilent Advanced Design System (ADS) software to get better rectification and impedance matching of the signal, thereby improving its detection sensitivity. The ADS simulation results show that the detection sensitivity is about 1000V/W for input power of -30 dBm at 170 GHz, thereby achieving the required performance of the sensor.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3