Data Preparation for NA62

Author:

Laycock Paul

Abstract

In 2017, NA62 recorded over a petabyte of raw data, collecting around a billion events per day of running. Data are collected in bursts of 3-5 seconds, producing output files of a few gigabytes. A typical run, a sequence of bursts with the same detector configuration and similar experimental conditions, contains 1500 bursts and constitutes the basic unit for offline data processing. A sample of 100 random bursts is used to make timing calibrations of all detectors, after which every burst in the run is reconstructed. Finally the reconstructed events are filtered by physics channel with an average reduction factor of 20, and data quality metrics are calculated. Initially a bespoke data processing solution was implemented using a simple finite state machine with limited production system functionality. In 2017, the ATLAS Tier-0 team offered the use of their production system, together with the necessary support. Data processing workflows were rewritten with better error-handling and I/O operations were minimised, the reconstruction software was improved and conditions data handling was changed to follow best practices suggested by the HEP Software Foundation conditions database working group. This contribution describes the experience gained in using these tools and methods for data-processing on a petabyte scale experiment.

Publisher

EDP Sciences

Reference10 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3