A cluster-finding algorithm for free-streaming data

Author:

Friese Volker

Abstract

In position-sensitive detectors with segmented readout (pixels or strips), charged particles activate in general several adjacent read-out channels. The first step in the reconstruction of the hit position is thus to identify clusters of active channels associated to one particle crossing the detector. In conventionally triggered systems, where the association of raw data to events is given by a hardware trigger, this is an easy-to-solve problem. It, however, becomes more involved in untriggered, free-streaming read-out systems like the one employed by the CBM experiment. Here, the time coordinate of the single-channel measurement must be taken into account to decider whether neighbouring active channels belong to a cluster. A simple extension of well-known cluster finding algorithms is not satisfactory because of involving increasing combinatorics, which are prohibitive for reconstruction in real-time. In this article, a cluster-finding solution for the Silicon Tracking System of the CBM experiment is presented which avoids any combinatorics or loops over detector channels. Its execution time is thus independent on the size of the data packages (time slices) delivered by the data acquisition, making it suitable for being used in online reconstruction.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3