A Scalable Online Monitoring System Based on Elasticsearch for Distributed Data Acquisition in Cms

Author:

Andre Jean-Marc,Behrens Ulf,Branson James,Brummer Philipp,Chaze Olivier,Cittolin Sergio,Da Silva Gomes Diego,Darlea Georgiana-Lavinia,Deldicque Christian,Demiragli Zeynep,Dobson Marc,Doualot Nicolas,Erhan Samim,Jonathan Richard Fulcher,Gigi Dominique,Gladki Maciej,Glege Frank,Gomez-Ceballos Guillelmo,Hegeman Jeroen,Holzner Andre,Janulis Mindaugas,Lettrich Michael,Mecionis Audrius,Meijers Frans,Meschi Emilio,Mommsen Remigius K.,Morovic Srecko,O'Dell Vivian,Orsini Luciano,Papakrivopoulos Ioannis,Paus Christoph,Petrova Petia,Petrucci Andrea,Pieri Marco,Rabady Dinyar,Racz Attila,Rapsevicius Valdas,Reis Thomas,Sakulin Hannes,Schwick Christoph,Simelevicius Dainius,Stankevicius Mantas,Vazquez Velez Cristina,Vougioukas Michail,Wernet Christian,Zejdl Petr

Abstract

The part of the CMS Data Acquisition (DAQ) system responsible for data readout and event building is a complex network of interdependent distributed applications. To ensure successful data taking, these programs have to be constantly monitored in order to facilitate the timeliness of necessary corrections in case of any deviation from specified behaviour. A large number of diverse monitoring data samples are periodically collected from multiple sources across the network. Monitoring data are kept in memory for online operations and optionally stored on disk for post-mortem analysis. We present a generic, reusable solution based on an open source NoSQL database, Elasticsearch, which is fully compatible and non-intrusive with respect to the existing system. The motivation is to benefit from an offthe-shelf software to facilitate the development, maintenance and support efforts. Elasticsearch provides failover and data redundancy capabilities as well as a programming language independent JSON-over-HTTP interface. The possibility of horizontal scaling matches the requirements of a DAQ monitoring system. The data load from all sources is balanced by redistribution over an Elasticsearch cluster that can be hosted on a computer cloud. In order to achieve the necessary robustness and to validate the scalability of the approach the above monitoring solution currently runs in parallel with an existing in-house developed DAQ monitoring system.

Publisher

EDP Sciences

Reference13 articles.

1. The CMS Collaboration, The Compact Muon Solenoid: Technical Proposal (1994)

2. The LHC Study Group, The Large Hadron Collider: Conceptual Design (1995)

3. The CMS Collaboration, The Trigger and Data Acquisition Project (2002)

4. The New CMS DAQ System for Run-2 of the LHC

5. Elasticsearch, https://www.elastic.co

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3