HIPSTER

Author:

Bevan Adrian,Charman Thomas,Hays Jonathan

Abstract

HIPSTER (Heavily Ionising Particle Standard Toolkit for Event Recognition) is an open source Python package designed to facilitate the use of TensorFlow in a high energy physics analysis context. The core functionality of the software is presented, with images from the MoEDAL experiment Nuclear Track Detectors (NTDs) serving as an example dataset. Convolutional neural networks are selected as the classification algorithm for this dataset and the process of training a variety of models with different hyper-parameters is detailed. Next the results are shown for the MoEDAL problem demonstrating the rich information output by HIPSTER that enables the user to probe the performance of their model in detail.

Publisher

EDP Sciences

Reference22 articles.

1. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS

2. The perceptron: A probabilistic model for information storage and organization in the brain.

3. Albertsson K. and others, Machine Learning in High Energy Physics Community White Paper, (2018) doi:10.1088/1742–6596/1085/2/022008

4. Abadi M. and others, TensorFlow: Large-scale machine learning on heterogeneous systems, (2015), Software available from tensorflow.org arXiv:1603.04467

5. Travis E., O., A guide to NumPy (Trelgol Publishing, USA, 2006) ISBN:9781517300074

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3