Evolution of the ALICE Software Framework for Run 3

Author:

Eulisse Giulio,Konopka Piotr,Krzewicki Mikolaj,Richter Matthias,Rohr David,Wenzel Sandro

Abstract

ALICE is one of the four major LHC experiments at CERN. When the accelerator enters the Run 3 data-taking period, starting in 2021, ALICE expects almost 100 times more Pb-Pb central collisions than now, resulting in a large increase of data throughput. In order to cope with this new challenge, the collaboration had to extensively rethink the whole data processing chain, with a tighter integration between Online and Offline computing worlds. Such a system, code-named ALICE O2, is being developed in collaboration with the FAIR experiments at GSI. It is based on the ALFA framework which provides a generalized implementation of the ALICE High Level Trigger approach, designed around distributed software entities coordinating and communicating via message passing. We will highlight our efforts to integrate ALFA within the ALICE O2 environment. We analyze the challenges arising from the different running environments for production and development, and conclude on requirements for a flexible and modular software framework. In particular we will present the ALICE O2 Data Processing Layer which deals with ALICE specific requirements in terms of Data Model. The main goal is to reduce the complexity of development of algorithms and managing a distributed system, and by that leading to a significant simplification for the large majority of the ALICE users.

Publisher

EDP Sciences

Reference15 articles.

1. The ALICE Collaboration, Journal of Instrumentation 3 S08002 (2008)

2. The ALICE Collaboration, Journal of Physics G: Nuclear and Particle Physics 41 087001, (2014)

3. Buncic P., Krzewicki M., Vyvre P. Vande, Technical Design Report for the Upgrade of the Online-Offline Computing System (2015)

4. Aliceo2group/aliceo2: First stable release (2018) https://doi.org/10.5281/zenodo.1493334

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3