Quantum Associative Memory in Hep Track Pattern Recognition

Author:

Shapoval Illya,Calafiura Paolo

Abstract

We have entered the Noisy Intermediate-Scale Quantum Era. A plethora of quantum processor prototypes allow evaluation of potential of the Quantum Computing paradigm in applications to pressing computational problems of the future. Growing data input rates and detector resolution foreseen in High-Energy LHC (2030s) experiments expose the often high time and/or space complexity of classical algorithms. Quantum algorithms can potentially become the lower-complexity alternatives in such cases. In this work we discuss the potential of Quantum Associative Memory (QuAM) in the context of LHC data triggering. We examine the practical limits of storage capacity, as well as store and recall errorless efficiency, from the viewpoints of the state-of-the-art IBM quantum processors and LHC real-time charged track pattern recognition requirements. We present a software prototype implementation of the QuAM protocols and analyze the topological limitations for porting the simplest QuAM instances to the public IBM 5Q and 14Q cloud-based superconducting chips.

Publisher

EDP Sciences

Reference20 articles.

1. Shochet M., Tompkins L., Cavaliere V., Annovi G. P. A., Volpi G., Tech. Rep. CERN-LHCC-2013-007. ATLAS-TDR-021, CERN-ATLAS (2013) , ATLAS Fast Tracker Technical Design Report, https://cds.cern.ch/record/1552953

2. The AMchip: a VLSI associative memory for track finding

3. The AMchip: a full-custom CMOS VLSI associative memory for pattern recognition

4. Ventura D., Martinez T., Quantum associative memory with exponential capacity, in 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227) (IEEE,1998)

5. Ventura D., Martinez T., in Artificial Neural Nets and Genetic Algorithms (Springer Vienna, 1999), pp. 22–27, https://doi.org/10.1007/978-3-7091-6384-9_5

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3