REANA: A System for Reusable Research Data Analyses
-
Published:2019
Issue:
Volume:214
Page:06034
-
ISSN:2100-014X
-
Container-title:EPJ Web of Conferences
-
language:
-
Short-container-title:EPJ Web Conf.
Author:
Šimko Tibor,Heinrich Lukas,Hirvonsalo Harri,Kousidis Dinos,Rodríguez Diego
Abstract
The revalidation, reinterpretation and reuse of research data analyses requires having access to the original computing environment, the experimental datasets, the analysis software, and the computational workflow steps which were used by researchers to produce the original scientific results in the first place.
REANA (Reusable Analyses) is a nascent platform enabling researchers to structure their research data analyses in view of enabling future reuse. The analysis is described by means of a YAML file that captures sufficient information about the analysis assets, parameters and processes. The REANA platform consists of a set of micro-services allowing to launch and monitor container-based computational workflow jobs on the cloud. The REANA user interface and the command-line client enables researchers to easily rerun analysis workflows with new input parameters. The REANA platform aims at supporting several container technologies (Docker), workflow engines (CWL, Yadage), shared storage systems (Ceph, EOS) and compute cloud infrastructures (Ku-bernetes/OpenStack, HTCondor) used by the community.
REANA was developed with the particle physics use case in mind and profits from synergies with general reusable research data analysis patterns in other scientific disciplines, such as bioinformatics and life sciences.
Reference13 articles.
1. 1,500 scientists lift the lid on reproducibility 2. Gronenschild E. H. B. M.,
Habets P.,
Jacobs H. I. L.,
Mengelers R.,
Rozendaal N.,
van Os J.,
Marcelis M.,
“The Effects of FreeSurfer Version, Workstation Type, and Macintosh Operating System Version on Anatomical Volume and Cortical Thickness Measurements”,
PLOS One
(2012),
doi:10.1371/journal.pone.0038234. 3. Akopoff Z. et al,
“Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics”
(2012),
arXiv:1205.4667. 4. Hildreth M. D.,
Boehnlein A.,
Cranmer K.,
Dallmeier-Tiessen S.,
Gardner R.,
Hacker T.,
Heinrich L.,
Jimenez I.,
Kane M.,
Katz D. S.,
Malik T.,
Maltzahn C.,
Neubauer M.,
Neubert S.,
Pivarski J.,
Sexton-Kennedy E.,
Shiers J.,
Šimko T.,
Smith S.,
South D.,
Verbytskyi A.,
Watts G.,
Wozniak J.,
“HEP Software Foundation Community White Paper Working Group – Data and Software Preservation to Enable Reuse”
(2018),
arXiv:1810.01191. 5. Chen X.,
Dallmeier-Tiessen S.,
Dasler R.,
Feger S.,
Fokianos P.,
Gonzalez J. B.,
Hir-vonsalo H.,
Kousidis D.,
Lavasa A.,
Mele S.,
Rodriguez Rodriguez D.,
Šimko T.,
Smith T.,
Trisovic A.,
Trzcinska A.,
Tsanaktsidis I.,
Zimmermann M.,
Cranmer K.,
Heinrich L.,
Watts G.,
Hildreth M.,
Lloret Iglesias L.,
Lassila-Perini K.,
Neubert S.,
“Open is not enough”,
Nature Physics
(2018),
doi:10.1038/s41567-018-0342-2.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|