REANA: A System for Reusable Research Data Analyses

Author:

Šimko Tibor,Heinrich Lukas,Hirvonsalo Harri,Kousidis Dinos,Rodríguez Diego

Abstract

The revalidation, reinterpretation and reuse of research data analyses requires having access to the original computing environment, the experimental datasets, the analysis software, and the computational workflow steps which were used by researchers to produce the original scientific results in the first place. REANA (Reusable Analyses) is a nascent platform enabling researchers to structure their research data analyses in view of enabling future reuse. The analysis is described by means of a YAML file that captures sufficient information about the analysis assets, parameters and processes. The REANA platform consists of a set of micro-services allowing to launch and monitor container-based computational workflow jobs on the cloud. The REANA user interface and the command-line client enables researchers to easily rerun analysis workflows with new input parameters. The REANA platform aims at supporting several container technologies (Docker), workflow engines (CWL, Yadage), shared storage systems (Ceph, EOS) and compute cloud infrastructures (Ku-bernetes/OpenStack, HTCondor) used by the community. REANA was developed with the particle physics use case in mind and profits from synergies with general reusable research data analysis patterns in other scientific disciplines, such as bioinformatics and life sciences.

Publisher

EDP Sciences

Reference13 articles.

1. 1,500 scientists lift the lid on reproducibility

2. Gronenschild E. H. B. M., Habets P., Jacobs H. I. L., Mengelers R., Rozendaal N., van Os J., Marcelis M., “The Effects of FreeSurfer Version, Workstation Type, and Macintosh Operating System Version on Anatomical Volume and Cortical Thickness Measurements”, PLOS One (2012), doi:10.1371/journal.pone.0038234.

3. Akopoff Z. et al, “Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics” (2012), arXiv:1205.4667.

4. Hildreth M. D., Boehnlein A., Cranmer K., Dallmeier-Tiessen S., Gardner R., Hacker T., Heinrich L., Jimenez I., Kane M., Katz D. S., Malik T., Maltzahn C., Neubauer M., Neubert S., Pivarski J., Sexton-Kennedy E., Shiers J., Šimko T., Smith S., South D., Verbytskyi A., Watts G., Wozniak J., “HEP Software Foundation Community White Paper Working Group – Data and Software Preservation to Enable Reuse” (2018), arXiv:1810.01191.

5. Chen X., Dallmeier-Tiessen S., Dasler R., Feger S., Fokianos P., Gonzalez J. B., Hir-vonsalo H., Kousidis D., Lavasa A., Mele S., Rodriguez Rodriguez D., Šimko T., Smith T., Trisovic A., Trzcinska A., Tsanaktsidis I., Zimmermann M., Cranmer K., Heinrich L., Watts G., Hildreth M., Lloret Iglesias L., Lassila-Perini K., Neubert S., “Open is not enough”, Nature Physics (2018), doi:10.1038/s41567-018-0342-2.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3