Author:
Kuznetsov Mikhail,Tinyakov Peter
Abstract
We study the energy-dependent distribution of ultra-high energy cosmic ray arrival directions with respect to luminous matter in the local Universe. We use a specially designed test statistic (TS) that is robust to uncertainties of the galactic magnetic field. We generate realistic mock UHECR sets assuming various injected compositions, and different strengths of the extragalactic magnetic field (EGMF). Applying the TS to both mock sets and the Telescope Array Surface Detector data we constrain, for a given EGMF strength, the UHECR injected mass composition at energies above 10 EeV. At highest energies, higher than 100 EeV, only heavy composition — iron or at least silicon — is compatible with the data, irrespective of the EGMF strength. We then compare the obtained results with the direct Telescope Array fluorescence measurements of the UHECR mass composition. Requiring that the TA composition measurements are compatible with the arrival direction distribution allows us to constrain the parameters of the EGMF. It appears that light composition, measured by TA at around 10 EeV, is compatible with the arrival directions if the EGMF has strength of order 1 nG.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献