Validated numerical simulation of airflow in child respiratory airways

Author:

Belka Miloslav,Maly Milan,Cejpek Ondrej,Elcner Jakub,Lizal Frantisek,Jedelsky Jan,Jicha Miroslav

Abstract

Both pulmonary airway geometry and breathing pattern evolve from birth to adulthood. These gradual changes significantly influence airflow dynamics and subsequently particle transport and deposition. Regarding the airway structure, the differences between infants and adults are most profound till 5 years of age. Since that age the child airway geometry can be downsized from adult lungs. The objective of the present work was to investigate airflow patterns in child airways. The digital model of male respiratory airways was downsized to dimensionally correspond to a 5–year old child. Airflow simulations with properly validated RANS k–ω turbulence model were performed under steady inhalation boundary conditions. The inspiratory flow rate was 12.5 L/min. The velocity profiles just upstream of the first bifurcation were validated by Laser–Doppler anemometry (LDA) experiments. A replica of the same geometry as the one used in the simulation was 3D printed and part of the trachea was replaced by a glass tube. LDA measurements in several points upstream of the first bifurcation were carried out. The validated flow patterns were compared to the ones obtained in adult lungs.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3