Author:
Ivanytskyi Oleksii,Blaschke David,Maslov Konstantin
Abstract
We present a novel relativistic density-functional approach to modeling quark matter with a mechanism to mimic confinement. The quasiparticle treatment of quarks provides their suppression due to large quark selfenergy already at the mean-field level. We demonstrate that our approach is equivalent to a chiral quark model with medium-dependent couplings. The dynamical restoration of the chiral symmetry is ensured by construction of the density functional. Beyond the mean field, quark correlations in the pseudoscalar channel are described within the Gaussian approximation. This explicitly introduces pionic states into the model. Their contribution to the thermodynamic potential is analyzed within the Beth–Uhlenbeck framework. The modification of the meson mass spectrum in the vicinity of thee (de)confinement transition is interpreted as the Mott transition. Supplemented with the vector repulsion and diquark pairing the model is applied to construct a hybrid quark-hadron EoS of cold compact-star matter. We study the connection of such a hybrid EoS with the stellar mass-radius relation and tidal deformability. The model results are compared to various observational constraints including the NICER radius measurement of PSR J0740+6620 and the tidal deformability constraint from GW170817. The model is shown to be consistent with the constraints, still allowing for further improvement by adjusting the vector repulsion and diquark pairing couplings.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献