Author:
Mandal Sandip,Gans Adrien,Nicolas Maxime,Pouliquen Olivier
Abstract
Cohesive granular media have broad applications in industries. However, our understanding of their flow behavior is still limited compared to dry granular media, although rich knowledge about their static and plastic properties has been gained. In this paper, we provide some insights into the flow behavior of cohesive granular media from our recent numerical studies using an inclined plane and a plane shear cell. We evidence that the cohesive nature of flows is significantly affected by material properties of the particles like stiffness and inelasticity in addition to the inter-particle adhesion and introduce the concept of “effective” adhesion, which incorporates the effects of these three variables. We propose constitutive relations involving dimensionless inertial number and “effective” cohesion number, based on the “effective” adhesion to describe the rheology. We also show that increasing adhesion increases the hysteresis in granular media, evidencing the existence of a prominent shear weakening branch in the friction coefficient versus inertial number rheological curve. Moreover, we reveal that this increasing hysteresis gives rise to the increasing occurrence of shear banding instability, pointing to the increasing possibility of jamming in cohesive granular media. Finally, we present a promising experimental approach to investigate the flow behavior of cohesive granular materials, based on a simple method of preparing a long time stable medium with a controlled adhesion between particles.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献