Dynamics of undeforming regions in the lead up to failure: jumping scales from lab to field

Author:

Tordesillas Antoinette,Zhou Shuo,Campbell Lachlan,Bellett Pat

Abstract

Knowledge transfer from micromechanics of granular media failure to geohazard forecasting and mitigation has been slow. But in the face of a rapidly expanding data infrastructure on the motion of individual grains for laboratory samples – and ground motion data at the field scale – opportunities to accelerate this knowledge transfer are emerging. In particular, such data assets coupled with data-driven approaches enable ‘new eyes’ to re-examine granular failure. To this end, effective strategies that can jump scales from bench to field are urgently needed. Here we demonstrate one strategy that focusses on the study of deformation patterns in the precursory failure regime using kinematic data. Unlike previous studies which focus on regions of high strains, here we probe the development and evolution of near-undeforming regions through the lens of explosive percolation. We find a common dynamical signature in which undeforming regions, which are initially transient in the precursory failure regime, become persistent from the time of imminent failure. We demonstrate the robustness of these findings for data on individual grain motions in a classical laboratory test and ground motion in two real landslides at vastly different scales.

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3