FALSTAFF, an apparatus to study fission fragment properties First arm results

Author:

Deshayes Quentin,Berthoumieux Eric,Doré Diane,Thulliez Loic,Combet Michel,Kebbiri Mariam,Legou Philippe,Marcel Alain,Mols Jean-Philippe,Frégeau Marc-Olivier,Herlant Sébastien,Ledoux Xavier,Pancin Julien

Abstract

Nuclear fission is a complex process that still need fundamental studies. New measurements, particularly of correlated observables, could allow to develop more sophisticated theoretical models to eventually have truly predictive capabilities for the physics of fission. Moreover, the next generation reactors concepts are mostly foreseen to operate in the fast-neutron energy domain, requiring new high quality nuclear data. In this context, a new experimental setup, called FALSTAFF, dedicated to the study of fission is under development. The FALSTAFF setup aims to investigate the fission of actinides in the fast-neutron energy domain (from a few hundreds of keV to a few MeV). Once completed, this two-arm spectrometer will detect both fragments in coincidence and allow to measure their time of flight (ToF) and kinetic energy. The average neutron multiplicity as a function of the fission fragment mass can then be assessed. The first arm of the FALSTAFF spectrometer was built. It is composed of two main parts: first, two SED-MWPC (Multi-Wire Proportional Counter) detectors are used to measure the time-of-flight as well as the position of the fragments, thus reconstructing their velocity. Second, an axial ionisation chamber gives their kinetic energy and the energy loss profile. This proceeding will describe the FALSTAFF setup as well as the methods that are used to extract the required observables, leading up to the reconstruction of the neutron multiplicity to study the fission process. Then, the recent results obtained with the first arm of FALSTAFF will be presented, exhibiting kinetic energy, velocity and post-evaporation mass distributions. These observables will be displayed for 252Cf spontaneous fission and some of the improvements recently made will be discussed.

Publisher

EDP Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measurement of the prompt fission $$\gamma $$-rays from slow neutron-induced fission of $$^{235}$$U with STEFF;The European Physical Journal A;2024-03-19

2. Fission Fragments and Fission Products;Nuclear Fission;2022-08-09

3. Absolute mass calibration of fission product distributions measured with the E-υ method;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3