Abstract
We review the phenomenology of relativistic nuclear collisions in the light of ultra-high energy cosmic ray physics. A novel phase of quantum chromodynamics called quark-gluon plasma is expected to appear in nuclear collisions at high energies. The produced hot matter is found to be well-described as a relativistic fluid with small viscosity. We show that the transport coefficient can be quantitatively extracted by comparing theoretical estimations of viscous hydrodynamic models to experimental data.