Author:
Clevinger Alexander,Dexheimer Veronica,Peterson Jeffrey
Abstract
At high density, matter is expected to undergo a phase transition to deconfined quark matter. Although the density at which it happens and the strength of the transition are still largely unknown, we can model it to be in agreement with known experimental data and reliable theoretical results. We discuss how deconfinement in dense matter can be affected by both by temperature and by strong magnetic fields within the Chiral Mean Field (CMF) model. To explore different dependencies in our approach, we also explore how deconfinement can be affected by the assumption of different degrees of freedom, different vector coupling terms, and different deconfining potentials, all at zero temperature. Both zero-net-strangeness and isospin-symmetric heavy-ion collision matter and beta-equilibrated charge-neutral matter in neutron stars are discussed.