EXTENDING CTF MODELING CAPABILITIES TO SFRs AND VALIDATION AGAINST SHRT TESTS

Author:

Aly Ahmed,Abarca Agustin,Avramova Maria,Ivanov Kostadin

Abstract

The utilization of liquid metals as coolants for fast reactors brings several economical and practical advantages that lead to a sustainable future for nuclear energy. Molten sodium is used as a coolant in Sodium Fast Reactors (SFRs). Sodium is relatively cheaper than other metal coolants. It requires lower pumping power, causes less neutron moderation and it is non-corrosive to the fuel cladding. The SFR hexagonal subassemblies are relatively smaller than Light Water Reactors (LWRs) subassemblies. The differences in the geometrical design of SFRs compared to LWRs lead to different physical behavior of the coolant. Several models and correlations particular to sodium were implemented in thermal-hydraulics (TH) computer codes in order to model the coolant behavior accurately. CTF is a subchannel TH code that was designed and validated for LWRs. In this work, the capabilities of the code were extended to SFRs by incorporating sodium coolant properties and correlations for friction factor, flow mixing coefficient and conduction heat transfer. The code was then validated against selected steady state data from the Experimental Breeder Reactor II Shutdown Heat Removal Tests SHRT-17 and SHRT-45R. CTF was used to simulate the instrumented subassemblies XX09 and XX10. The results demonstrate the capability of CTF to model SFRs. Code validation is currently being extended to the transient phases of the SHRT experiments.

Publisher

EDP Sciences

Reference17 articles.

1. Tang Y.S. et al., Thermal Analysis of Liquid-Metal Fast Breeder Reactors, PP. 5, American Nuclear Society, Madison, Pennsylvania, USA (1978).

2. Development of a subchannel analysis code for SFR wire-wrapped fuel assemblies

3. https://gain.inl.gov/SiteAssets/Fast%20Reactors/SFR-NRCTechnologyandSafetyOverview18Feb15.pdf Last checked 30 Sep. 2019.

4. Evaluation of existing correlations for the prediction of pressure drop in wire-wrapped hexagonal array pin bundles

5. Thermal–hydraulic analysis of wire-wrapped SFR test subassemblies by subchannel analysis method

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3