Spectrally-Resolved Raman Lidar to Measure Atmospheric Three-Phase Water Simultaneously

Author:

Liu Fuchao,Yi Fan

Abstract

We report on a spectrally-resolved Raman lidar that can simultaneously profile backscattered Raman spectrum signals from water vapor, water droplets and ice crystals as well as aerosol fluorescence in the atmosphere. The lidar emits a 354.8-nm ultraviolet laser radiation and samples echo signals in the 393.0-424.0 nm wavelength range with a 1.0-nm spectral resolution. A spectra decomposition method is developed to retrieve fluorescence spectra, water vapor Raman spectra and condensed (liquid and/or ice) water Raman spectra successively. Based on 8 different clear-sky nighttime measurement results, the entire atmospheric water vapor Raman spectra are for the first time obtained by lidar. The measured normalized water vapor Raman spectra are nearly invariant and can serve as background reference for atmospheric water phase state identification under various weather conditions. For an ice virga event, it’s found the extracted condensed water Raman spectra are highly similar in shape to theoretical ice water Raman spectra reported by Slusher and Derr (1975). In conclusion, the lidar provides an effective way to measure three-phase water simultaneously in the atmosphere and to study of cloud microphysics as well as interaction between aerosols and clouds.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3