Continuous Lidar Observation of Near Surface Aerosol Using Optical and Sampling Data from Ground-Based Instruments

Author:

Aminuddin Jamrud,Alimuddin Ilham,Tursilowati Laras,Manago Naohiro,Kuze Hiroaki

Abstract

Monitoring of near-surface aerosol is important for both public health issues and radiation budget studies. In this study, we report a continuous observation method of aerosol particles by means of a vertical Mie-scattering lidar in combination with other optical and sampling instruments operated at the ground level. In the Fernald method used for processing the lidar signal, the most appropriate value of lidar ratio at 532 nm is estimated from the Mie-scattering calculation. The input parameters, namely, the mode radius, variance, and both real and imaginary parts of refractive index, are so determined as to reproduce the data from ground-based sampling instruments. Instead of the far-end boundary condition, the extinction coefficient at the surface level is used for constraining the retrieved aerosol extinction profile. The correction of the truncation and relative humidity (RH) effects on the scattering data from the sampling is made with the help of the optical data from a visibility-meter. We discuss the observed features in both low and high RH cases. Such a capability will be useful for uninterrupted lidar observations of near-surface aerosols irrespective of the presence of clouds that often hinders signal observations at higher altitudes where the aerosol-free atmosphere is assumed for the conventional Fernald analysis.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3