Author:
Mishima Kenji,Otomo Toshiya,Ikeda Kazutaka,Ohshita Hidetoshi
Abstract
Due to their large coherent scattering cross section, diamond nanoparticles (DNPs) are considered as a promising candidate material for a new neutron reflector. For investigation of scattering cross sections of packed samples, we have developed a technique for mechanical compression of DNP powder. Application of 220 MPa allowed us to increase the bulk density from 0.40 g/cm3 to 1.1 g/cm3. The differential cross sections of uncompressed and packed samples were measured using the high-intensity total diffractometer instrument NOVA at J-PARC, covering transfer wavenumbers (q) from 0.6 to 100 nm−1. The q dependence for the compressed sample agreed with the theoretical expectation derived from the Born approximation applied to homogeneous spheres with inclusion of a hard-sphere model to account for the inter-particle structure, whereas the results obtained from the powder sample disagreed. This implies that the theoretical description does not well represent the mesoscopic structure of the DNP powder sample.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献