A look at hadronization via high multiplicity

Author:

Kokoulina Elena,Kutov Andrey,Nikitin Vladimir,Riadovikov Vasilii,Vorobiev Alexander

Abstract

Multiparticle production is studied experimentally and theoretically in QCD that describes interactions in the language of quarks and gluons. In the experiment the real hadrons are registered. Various phenomenological models are used for transfer from quarks and gluons to observed hadrons. In order to describe the high multiplicity region, we have developed a gluon dominance model (GDM). It represents a convolution of two stages. The first stage is described as a part of QCD. For the second one (hadronization), the phenomenological model is used. To describe hadronization, a scheme has been proposed, consistent with the experimental data in the region of its dominance. Comparison of this model with data on e+e- annihilation over a wide energy interval (up to 200 GeV) has confirmed the fragmentation mechanism of hadronization, the development of the quark-gluon cascade with energy increase and domination of bremsstrahlung gluons. The description of topological cross sections in pp collisions within GDM testifies that in hadron collisions the mechanism of hadronization is being replaced by the recombination one. At that point, gluons play an active role in the multiparticle production process, and valence quarks are passive. They stay in the leading particles, and only the gluon splitting is responsible for the region of high multiplicity. GDM with inclusion of intermediate quark charged topologies describes topological cross sections in pp̅ annihilation and explains initial linear growth in the region of negative values of a secondary correlative momentum vs average pion multiplicity with increasing of energy. The proposed hadronization scheme can describe the basic processes of multiparticle production.

Publisher

EDP Sciences

Reference14 articles.

1. Halzen F. and Martin A. D., Quarks and Leptons (Acad. press, NY 1979)

2. Jet calculus: A simple algorithm for resolving QCD jets

3. QCD jets as Markov branching processes

4. Kokoulina E. S., in XXXII ISMD, Alushta, Ukraine, 2002 (World Scientific, 2002) 340

5. High multiplicity study and gluon dominance model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3