Abstract
Machine learning techniques have been successfully introduced in the fields of Space Physics and Space Weather, yielding highly promising results in modeling and predicting many disparate aspects of the geospace environment. Magnetospheric ultra-low frequency (ULF) waves can have a strong impact on the dynamics of charged particles in the radiation belts, which can affect satellite operation. Here, we employ a method based on Fuzzy Artificial Neural Networks in order to detect ULF waves in the time series of the magnetic field measurements on board the low-Earth orbit CHAMP satellite. The outputs of the method are validated against a previously established, wavelet-based, spectral analysis tool, that was designed to perform the same task, and show encouragingly high scores in the detection and correct classification of these signals.
Subject
Space and Planetary Science,Atmospheric Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献