Interhemispheric conjugate effect in longitude variations of mid-latitude ion density

Author:

Chen Yiding,Liu Libo,Le Huijun,Zhang Hui

Abstract

Earlier incoherent scatter radar measurements revealed upward topside ion fluxes in the summer and downward fluxes in the winter at mid-latitudes at night; a summer to winter interhemispheric coupling was accordingly inferred. However, this interhemispheric coupling through the plasmasphere is difficult to confirm directly from observations. A possible result induced by this coupling is interhemispheric conjugacy of the mid-latitude ionosphere. In this paper, interhemispheric conjugate effect in longitude variations of mid-latitude total ion density (Ni) is presented, for the first time, using the Defense Meteorological Satellite Program (DMSP) measurements; northern and southern Ni longitude variations at 21:30 LT are similar between magnetically conjugate mid-latitudes around solar minimum June Solstice of 1996. The conjugate effect after sunset also occurs around the June Solstice in other solar minimum years but disappears when solar activity increases. We suggested that mid-latitude interhemispheric coupling is responsible for the conjugate effect. Neutral wind induced ionospheric transport causes topside longitude variations via upward diffusion at summer mid-latitudes; this further induces similar longitude variations of topside Ni at winter mid-latitudes via the summer to winter interhemispheric coupling. The conjugate effect occurs only inside the plasmapause where magnetic flux tubes are closed and the plasma in these tubes can stably corotate with the Earth. The conjugate effect not only proves mid-latitude interhemispheric coupling through the plasmasphere, but also implies that neutral wind induced transport can affect ionospheric coupling to the plasmasphere at mid-latitudes.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association, CAS

Publisher

EDP Sciences

Subject

Space and Planetary Science,Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3