Measurement of the polarisation in the auroral N2+ 427.8 nm band

Author:

Barthelemy Mathieu,Lamy Hervé,Vialatte Anne,Johnsen Magnar Gullikstad,Cessateur Gaël,Zaourar Naïma

Abstract

In this paper, we provide for the first time polarisation measurements of the N+2 band at 427.8 nm performed with Premier Cru, a dedicated spectropolarimeter to investigate the polarisation of auroral emission lines between 400 and 700 nm. Details about the instrument, the observing conditions and the data analysis procedure are provided. Results obtained during three nights in March 2017 in Skibotn, Norway, indicate that the auroral blue line is polarised with a degree of linear polarisation of a few %. Due to weak Signal-to-Noise Ratios (SNR), these measurements still need to be taken with caution since none of the individual data set has a detection with a 3σ confidence level. However, results integrated over the entire observing period each night do show a 3σ detection but due to the long integration period, the origin of this polarisation cannot be linked to a specific type of aurora (diffuse vs structured arc) or specific ionospheric or geomagnetic conditions. These observations need to be confirmed with an improved design to increase the SNR and decrease the exposure time. When available, these improved measurements of the blue line polarisation will be important to better understand the physics of auroral processes at altitudes below 100 km where the N2+ emission occurs and possibly for space weather applications if the polarisation varies with ionospheric/geomagnetic conditions.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sub-percent characterization and polarimetric performance analysis of commercial micro-polarizer array detectors;Polarization: Measurement, Analysis, and Remote Sensing XVI;2024-06-07

2. Laboratory Experiments Confirm the Polarization of Auroral Emissions;Geophysical Research Letters;2022-07

3. Novel acousto-optical tunable filter (AOTF) based spectropolarimeter for the characterization of auroral emission;Instrumentation Science & Technology;2020-09-02

4. On the nightglow polarisation for space weather exploration;Journal of Space Weather and Space Climate;2020

5. New AOTF-based instrumental concepts for atmospheric science;Fourteenth School on Acousto-Optics and Applications;2019-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3