Author:
Kahler Stephen W.,Ling Alan. G.
Abstract
Solar flare X-ray peak fluxes and fluences in the 0.1–0.8 nm band are often used in models to forecast solar energetic particle (SEP) events. Garcia (2004) [Forecasting methods for occurrence and magnitude of proton storms with solar soft X rays, Space Weather, 2, S02002, 2004] used ratios of the 0.05–0.4 and 0.1–0.8 nm bands of the X-ray instrument on the GOES spacecraft to plot inferred peak flare temperatures versus peak 0.1–0.8 nm fluxes for flares from 1988 to 2002. Flares associated with E > 10 MeV SEP events of >10 proton flux units (pfu) had statistically lower peak temperatures than those without SEP events and therefore offered a possible empirical forecasting tool for SEP events. We review the soft and hard X-ray flare spectral variations as SEP event forecast tools and repeat Garcia’s work for the period 1998–2016, comparing both the peak ratios and the ratios of the preceding 0.05–0.4 nm peak fluxes to the later 0.1–0.8 nm peak fluxes of flares >M3 to the occurrence of associated SEP events. We divide the events into eastern and western hemisphere sources and compare both small (1.2–10 pfu) and large (≥300 pfu) SEP events with those of >10 pfu. In the western hemisphere X-ray peak ratios are statistically lower for >10 pfu SEP events than for non-SEP events and are even lower for the large (>300 pfu) events. The small SEP events, however, are not distinguished from the non-SEP events. We discuss the possible connections between the flare X-ray peak ratios and associated coronal mass ejections that are presumed to be the sources of the SEPs.
Subject
Space and Planetary Science,Atmospheric Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献