AMICal Sat and ATISE: two space missions for auroral monitoring

Author:

Barthelemy Mathieu,Kalegaev Vladimir,Vialatte Anne,Le Coarer Etienne,Kerstel Erik,Basaev Alexander,Bourdarot Guillaume,Prugniaux Melanie,Sequies Thierry,Rolland Etienne,Aubert Emmanuelle,Grennerat Vincent,Ayasso Hacheme,Busom Vidal Arnau,Apper Fabien,Stepanov Mikhail,Escudier Benedicte,Croize Laurence,Romand Frederic,Payan Sebastien,Panasyuk Mikhail

Abstract

A lack of observable quantities renders it generally difficult to confront models of Space Weather with experimental data and drastically reduces the forecast accuracy. This is especially true for the region of Earth’s atmosphere between altitudes of 90 km and 300 km, which is practically inaccessible, except by means of remote sensing techniques. For this reason auroral emissions are an interesting proxy for the physical processes taking place in this region. This paper describes two future space missions, AMICal Sat and ATISE, that will rely on CubeSats to observe the aurora. These satellites will perform measurements of auroral emissions in order to reconstruct the deposition of particle precipitations in auroral regions. ATISE is a 12U CubeSat with a spectrometer and imager payloads. The spectrometer is built using the micro-Spectrometer-On-a-Chip (μSPOC) technology. It will work in the 370–900 nm wavelength range and allow for short exposure times of around 1 s. The spectrometer will have six lines of sight. The joint imager is a miniaturized wide-field imager based on the Teledyne-E2V ONYX detector in combination with a large aperture objective. Observation will be done at the limb and will enable reconstruction of the vertical profile of the auroral emissions. ATISE is planned to be launched in mid 2021. AMICal Sat is a 2U CubeSat that will embed the imager of ATISE and will observe the aurora both in limb and nadir configurations. This imager will enable measuring vertical profiles of the emission when observing in a limb configuration similar to that of ATISE. It will map a large part of the night side auroral oval with a resolution of the order of a few km. Both the spectrometer and imager will be calibrated with a photometric precision better than 10% using the moon as a wide-field, stable and extended source. Ground-based demonstrators of both instruments have been tested in 2017 in Norway and Svalbard. Even though some issues still need to be solved, the first results are very encouraging for the planned future space missions. Data interpretation will be done using the forward Transsolo code, a 1D kinetic code solving the Boltzmann equation along a local vertical and enabling simulation of the thermospheric and ionospheric emissions using precipitation data as input.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3