Abelian periods, partial words, and an extension of a theorem of Fine and Wilf

Author:

Blanchet-Sadri Francine,Simmons Sean,Tebbe Amelia,Veprauskas Amy

Abstract

Recently, Constantinescu and Ilie proved a variant of the well-known periodicity theorem of Fine and Wilf in the case of two relatively prime abelian periods and conjectured a result for the case of two non-relatively prime abelian periods. In this paper, we answer some open problems they suggested. We show that their conjecture is false but we give bounds, that depend on the two abelian periods, such that the conjecture is true for all words having length at least those bounds and show that some of them are optimal. We also extend their study to the context of partial words, giving optimal lengths and describing an algorithm for constructing optimal words.

Publisher

EDP Sciences

Subject

Computer Science Applications,General Mathematics,Software

Reference26 articles.

1. On shortest crucial words avoiding abelian powers

2. S.V. Avgustinovich, J. Karhumäki and S. Puzynina, On abelian versions of the critical factorization theorem. In JM 2010, 13ièmes Journées Montoises d’Informatique Théorique, Amiens, France (2010).

3. Partial words and a theorem of Fine and Wilf

4. F. Blanchet-Sadri, Algorithmic Combinatorics on Partial Words. Chapman & Hall/CRC Press, Boca Raton, FL (2008).

5. Avoiding abelian squares in partial words

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dyck Words, Lattice Paths, and Abelian Borders;International Journal of Foundations of Computer Science;2022-04

2. A periodicity lemma for partial words;Information and Computation;2020-12

3. Abelian periods of factors of Sturmian words;Journal of Number Theory;2020-09

4. String periods in the order-preserving model;Information and Computation;2020-02

5. String Periods in the Order-Preserving Model;LEIBNIZ INT PR INFOR;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3