Author:
He Yu-Lian,Wang Yuan-Sheng,Wen Qi-Ye
Abstract
The increasing development of terahertz (THz) technology has led to various potential applications in THz imaging, spectroscopy and communications. These devices capable of actively manipulating the amplitude, phase and frequency of THz waves are thus gaining numerous interests. All-optical silicon-based spatial terahertz modulators (STMs), as a simple, cost-effective, and reconfigurable technique, are standing the focus of research. Beginning with a fundamental concept of THz radiation, this paper systematically summarized the modulation mechanism and theoretical model for this kind of STM, reviewed the recent advancements in THz functional devices implemented by this optical method and yet, discussed the performance-improved measures with an emphasis on the reflection reduction. Despite that, there has been considerable progress in realizing high-performance STMs, and novel design is urgent to realize higher modulation rate and more functionality.