The increasing of maximum lake water temperature in lowland lakes of central Europe: case study of the Polish Lakeland

Author:

Ptak Mariusz,Sojka MariuszORCID,Kozłowski Michał

Abstract

The paper presents the results of time-related changes in maximum temperatures in lakes. The analysis was carried out on the basis of 9 lakes located in the northern part of Poland. The analysis was based on daily water and air temperatures in the period 1971–2015. Mann–Kendall's and Sen's tests were applied to determine the directions and rates of change of maximum air and water temperatures. The average increase of maximum water temperature in analysed lakes was found to be 0.39 °C dec–1, while the warming trend of the maximum air temperature was 0.48 °C dec–1. Cluster analysis (CA) was used to group lakes characterised by similar changes of maximum water temperature. The first group included five lakes in which the values of the maximum temperature trends were 0.41 °C dec–1. In the second cluster the average value of maximum water temperature increase was smaller than in the first cluster (0.36 °C dec–1). Comparing the results of cluster analysis with morphometric data show that in the first cluster lakes are having a greater average depth, maximum depth and water transparency in comparison to the lakes of the second cluster.

Publisher

EDP Sciences

Subject

Aquatic Science

Reference63 articles.

1. Lakes as sentinels of climate change

2. Relaxation time effects of wave ripples on tidal beaches

3. Effects of temperature and salinity on spawning of the brackish water bivalve Corbicula japonica in Lake Abashiri, Hokkaido, Japan

4. The North Sea regime shift: Evidence, causes, mechanisms and consequences

5. Blenckner T, Adrian R, Arvola L, Järvinen M, Nõges P, Nõges T. Pettersson K, Weyhenmeyer GA. 2010. The Impact of climate change on lakes in Northern Europe. In: George G (ed.), Climate and Lake Impacts in Europe. Springer Aquatic Ecology series, pp. 339–358.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3