Approximating quasi-stationary distributions with interacting reinforced random walks

Author:

Budhiraja Amarjit,Fraiman NicolasORCID,Waterbury Adam

Abstract

We propose two numerical schemes for approximating quasi-stationary distributions (QSD) of finite state Markov chains with absorbing states. Both schemes are described in terms of certain interacting chains in which the interaction is given in terms of the total time occupation measure of all particles in the system and has the impact of reinforcing transitions, in an appropriate fashion, to states where the collection of particles has spent more time. The schemes can be viewed as combining the key features of the two basic simulation-based methods for approximating QSD originating from the works of Fleming and Viot (1979) and Aldous, Flannery and Palacios (1998), respectively. The key difference between the two schemes studied here is that in the first method one starts with a(n) particles at time 0 and number of particles stays constant over time whereas in the second method we start with one particle and at most one particle is added at each time instant in such a manner that there are a(n) particles at time n. We prove almost sure convergence to the unique QSD and establish Central Limit Theorems for the two schemes under the key assumption that a(n) = o(n). When a(n) ~ n, the fluctuation behavior is expected to be non-standard. Some exploratory numerical results are presented to illustrate the performance of the two approximation schemes.

Publisher

EDP Sciences

Subject

Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3