Sustainable reverse logistic network design for end-of-life use-case study

Author:

Cinar Suna

Abstract

Due to the increased interests in environmental issues along with stringent environmental legislation and regulations, companies start taking a fresh look at the impact on their reverse logistic activties on the environment. This paper is an example of the recovery of valuable material that can be recycled/recovered or remanufactured at the end of product useful life by designing an effective reverse logistics network. In this study, a mixed integer linear programming (MILP) model is proposed to determine a long-term strategy for end-of-life (EOL). The mathematical model not only takes into account the minimization of system operating costs, but also considered minimization of carbon emissions related to the transportation and processing of used products. Therefore, the objective in this model was to minimize the transportation and operating cost as well as minimizing environmental effects these activities. The results of this study show the trade-off between the costs and carbon emissions, and cost effectiveness for improving environmental performance, all of which have great practical implication on decision-making of network configurations a reverse logistics system. The proposed model is validated by examining a case study from wind turbine (WT) sector.

Publisher

EDP Sciences

Subject

Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3