A Non-Linear-Threshold-Accepting Function Based Algorithm for the Solution of Economic Dispatch Problem

Author:

Nahas Nabil,Darghouth Mohamed Noomane,Abouheaf Mohammed

Abstract

This article introduces a novel heuristic algorithm based on Non-Linear Threshold Accepting Function to solve the challenging non-convex economic dispatch problem. Economic dispatch is a power system management tool; it is used to allocate the total power generation to the generating units to meet the active load demand. The power systems are highly nonlinear due to the physical and operational constraints. The complexity of the resulting non-convex objective cost function led to inabilities to solve the problem by using analytical approaches, especially in the case of large-scale problems. Optimization techniques based on heuristics are used to overcome these difficulties. The Non-Linear Threshold Accepting Algorithm has demonstrated efficiency in solving various instances of static and dynamic allocation and scheduling problems but has never been applied to solve the economic dispatch problem. Existing benchmark systems are used to evaluate the performance of the proposed heuristic. Additional random instances with different sizes are generated to compare the adopted heuristic to the Harmony Search and the Whale Optimization Algorithms. The obtained results showed the superiority of the proposed algorithm in finding, for all considered instances, a high-quality solution in minimum computational time.

Publisher

EDP Sciences

Subject

Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science

Reference48 articles.

1. Aydin D., Yavuz G., Ozyön S., Yașar C. and Stützle T., Artificial bee colony framework to non-convex economic dispatch problem with valve-point effects: a case study. In: GECCO 2017 – Proceedings of the Genetic and Evolutionary Computation Conference Companion (2017) 1311–1318.

2. Modified particle swarm optimization for nonconvex economic dispatch problems

3. Solution of Economic Load Dispatch using real coded Hybrid Stochastic Search

4. Biogeography-Based Optimization for Different Economic Load Dispatch Problems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3