Image compression of surface defects of the hot-rolled steel strip using Principal Component Analysis

Author:

Boudiaf Adel,Boubendira Khaled,Harrar Khaled,Saadoune Achour,Ghodbane Hatem,Dahane Amine,Messai Oussama

Abstract

The quality control of steel products by human vision remains tedious, fatiguing, somewhat fast, rather robust, sketchy, dangerous or impossible. For these reasons, the use of the artificial vision in the world of quality control has become more than necessary. However, these images are often large in terms of quantity and size, which becomes a problem in quality control centers, where engineers are unable to store these images. For this, efficient compression techniques are necessary for archiving and transmitting the images. The reduction in file size allows more images to be stored in a disk or memory space. The present paper proposes an effective technique for redundancy extraction using the Principal Component Analysis (PCA) approach. Furthermore, it aims to study the effects of the number of eigenvectors employed in the PCA compression technique on the quality of the compressed image. The results revealed that using only 25% of the eigenvectors provide very similar compressed images compared to the original ones, in terms of quality. These images are characterized by high compression ratios and a small storage space.

Publisher

EDP Sciences

Subject

General Materials Science

Reference23 articles.

1. A Fast and Efficient Approach for Image Compression Using Curvelet Transform

2. Haque M.R, Ahmed F., Image data compression with JPEG and JPEG2000, Proceeding of the 8th International Conference on Computer and Information Technology, 2005

3. An efficient bitwise Huffman coding technique based on source mapping

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3