Interactions between marine microorganisms and metal: the start point of a new bioinspired solution for corrosion protection

Author:

Marques Maria JoãoORCID,Jaume Julien,Diderot Anthony,Délia Marie-Line,Basséguy Régine

Abstract

Among the strategies currently used to protect metallic materials from corrosion, and thus increase their durability, conversion treatments and coatings can be considered as the most efficient and cost-effective alternatives. However, these techniques must comply with increasingly stringent regulations such as REACH. On another note, in the field of interactions between microorganisms and conductive material, it has been shown that microorganisms can not only accelerate corrosion in some cases (biocorrosion or MIC) but also inhibit it in others, thus protecting the underlying material (MIC Inhibition). In this context, the MICOATEC ANR project is based on the observation that interactions between an aluminium alloy (AA5083) and microorganisms in the marine environment lead to the formation of a protective layer against corrosion. The MICOATEC project aims to develop, via a biomimetic strategy, a new type of process for producing anti-corrosion coatings. The main goal is therefore to translate the natural biotic process into an abiotic technological process for corrosion protection, without replicating the biofilm itself or incorporating active biocompounds into the coating matrix.

Funder

Agence Nationale de la Recherche

Publisher

EDP Sciences

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3