Author:
Vincent Julia,Sabot René,Lanneluc Isabelle,Refait Philippe,Turcry Philippe,Mahieux Pierre-Yves,Jeannin Marc,Sablé Sophie
Abstract
Biomineralization induced by microbial enzymes, which catalyse CaCO3 precipitation, is a promising field of research for various applications in building eco-materials. Especially, this could provide an eco-friendly process for protection of coastal areas against erosion. In the present investigation, fourteen bacterial strains were isolated and characterized from both natural seawater and calcareous deposits formed on a cathodically protected steel mesh in marine environment. All of them induced calcium carbonate precipitation in various media by producing urease and/or carbonic anhydrase enzymes. The calcium carbonate minerals produced by bacteria were identified by microscopy and µ-Raman spectroscopy. In parallel, an experimental set-up, based on a column reactor, was developed to study biomineralization and microbial capacity of Sporosarcina pasteurii to form sandy agglomerate. These well-known calcifying bacteria degraded the urea present in liquid medium circulating through the column to produce calcium carbonate, which acted as cement between sand particles. The bio-bricks obtained after 3 weeks had a compressive strength of 4.2 MPa. 20% of the inter-granular voids were filled by calcite and corresponded to 13% of the total mass. We successfully showed that bio-column system can be used to evaluate the bacterial ability to agglomerate a sandy matrix with CaCO3.
Subject
General Materials Science
Reference38 articles.
1. GéoLittoral, « Indicateur national de l’érosion côtière », 29 janvier 2016, http://www.geolittoral.developpement-durable.gouv.fr/indicateur-national-de-l-erosion-cotiere-r473.html
2. Zanibellato A.,
Synthèse et études physico-chimiques d’un agglomérat calcomagnésien formé sur acier en milieu marin : un éco-matériau pour la protection du littoral, PhD thesis,
Université de La Rochelle,
2016
3. Microbially Influenced Corrosion as a Model System for the Study of Metal Microbe Interactions: A Unifying Electron Transfer Hypothesis
4. Cyanobacterial exopolymer properties differentiate microbial carbonate fabrics
5. Formation Mechanisms of Beachrocks in Okinawa and Ishikawa, Japan, with a Focus on Cements
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献