Optimization of phosphogypsum conversion into calcium carbonate and lithium sulfate monohydrate

Author:

Ennaciri YassineORCID,Bettach MohammedORCID

Abstract

Phosphogypsum (PG) is an acidic by-product generated during the production of phosphoric acid. Usually this by-product is stockpiled or dumped into water bodies, which causes several environmental pollution problems. The aim of this work is to reduce this environmental risk by producing CaCO3 and Li2SO4.H2O from the conversion of PG by Li2CO3. To optimize the reaction conditions, four parameters have been investigated such as the initial concentration of the reagents, the reaction duration, the temperature and the gypsum purity. In addition, the nature of the resulting products was proved principally by X-ray diffraction technic. The obtained results show that the initial concentration of the reagents and the reaction duration are the most influential parameters, while the temperature has no significance effect on this reaction. Also, the acidity and the presence of impurities into PG induce its reactivity compared than commercial gypsum. The purity of the formed CaCO3 and Li2SO4.H2O at the optimum conversion of PG is 96.08 and 98.71% respectively.

Publisher

EDP Sciences

Subject

General Materials Science

Reference20 articles.

1. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources

2. Chagnes A., Swiatowska J., Lithium process chemistry: Resources, extraction, batteries, and recycling, Eds. Elsevier, 2015

3. Wietelmann U., Bauer R.J., Lithium and lithium compounds, Ullmann’s Encyclopedia of Industrial Chemistry, 2012

4. Crystallization in Li2SO4–Li2O–P2O5 glassy ionic system: An assessment through electrical transport

5. Chemical stability study of Li2SO4 in a H2S/O2 fuel cell

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3