MFA vs. LCA, particularly as environment management methods in industry: an opinion

Author:

Birat Jean-PierreORCID

Abstract

MFA was born in the 1980s, independently, in various laboratories around the world. On the one hand, Industry was trying then to put numbers on its circular economy practices, while, on the other, Academia endeavored to construct a metaphor of natural ecology (BioGeoChemical Cycles [BGCC]) or of the metabolism of ecosystems to describe the activities of the anthroposphere, especially its material and the energy flows (and stocks). This article briefly reviews the early efforts of Usinor (now ArcelorMittal) in this area, in the framework of a program called “The Cycle of Iron” and points out what it was trying to achieve: basically, analyze and evaluate a true recycling rate (RR) of steel. MFA turned out to be potentially a more powerful tool than ad hoc models of materials circularity too and Industry left the leadership to academic groups to flesh out the new methodology to confront such difficult questions as the evaluation of a RR. Then the article conducts a kind of methodological and epistemological audit of the present status of MFA, positioning it in the wide framework of descriptions of material flows in space and time, and thus picturing it as a competing methodology to LCA. While the former is macro-scale, synchronic, broadly economy-oriented, the latter is micro-scale, diachronic, product and value chain-oriented, while both “report” to different communities, the Industrial Ecology community and the LCA community respectively, and more. Both schools of thoughts have been attending SAM conferences regularly, where they have been reporting their continuous search for new developments and their search for a better sustainability assessment of materials, products, industrial systems and economic activities of all kinds. The various contributions over the first 12 SAM events are analyzed. Finally, MFA and LCA are compared, feature by feature, in terms of the communities they serve and of their strengths and weaknesses. Unsurprisingly, the conclusion is that they are more complementary than competing with each other.

Publisher

EDP Sciences

Subject

General Materials Science

Reference24 articles.

1. SFI Metal Production Spring Meeting, Trondheim, 24–25 April 2019

2. Birat J.-P., 2015 Chapter 7 – History, geography and geopolitics of materials, in: Sustainable Materials Science-Environmental Metallurgy, Volume 2 - Pollution and emissions, biodiversity, toxicology and ecotoxicology, economics and social roles, foresight, EDP Sciences, 2021, 630 p. (to be published in 2021)

3. 日本鉄源協会, Nihon Tetsugen Kyokai, Japan, http://www.tetsugen.gol.com/.

4. Usinor, unpublished work, ca. 1992

5. Birat J.-P., Zaoui A., Le “Cycle du Fer” ou le recyclage durable de l’acier, La Revue de Métallurgie-CIT 795–807 (2002)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3