Morphology, electrical & optical properties of BaO thin films deposited by PVD

Author:

Laouid AminaORCID,Alaoui Belghiti AmineORCID,Wisniewski Krzysztof,Tlemçani Mouhaydine,Płóciennik Przemysław,Hajjaji Abdelowahed,Zawadzka AnnaORCID

Abstract

In this work, we explore a new experimental study of Barium oxide (BaO) thin films, fabricated using the physical vapor deposition (PVD) technique on both glass and silicon substrates. The BaO thin films have emerged as highly adaptable materials with immense potential across multiple technological domains. The investigation focuses on the morphological, optical, and electrical properties of BaO thin films to determine their potential for various applications. These films, consistently tailored to a thickness of 100 nm, exhibit exceptional optical properties, boasting an impressive transmittance rate of up to 90%. This makes them exceptionally well-suited for applications that demand superior optical transmission, such as flat-panel displays, photovoltaic devices, and various optoelectronic applications. The films’ low roughness values, measured at 6.31 nm for glass-deposited films and 13.32 nm for silicone-deposited ones, underscore their uniformity, ensuring stable and precise performance control in diverse applications. Further underscoring their versatility is the wide energy gap of 2.93 eV, suggesting their potential utility in advanced optoelectronic devices that require higher energy levels. In addition to their optical prowess, BaO thin films exhibit impressive electrical resistance, measuring at 3.3 × 108 ohms, rendering them promising candidates for specialized applications, including pressure and humidity sensors, as well as electrical insulation devices. Overall, these films represent an exciting avenue for addressing specific technological needs and driving innovation in the realm of thin film technology.

Funder

IDUB project - emerging research fields: “Material Science and Technology”.

Narodowe Centrum Nauki

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of the Physical Properties of Doped ZnS Thin Films Manufactured by PVD.;2024 24th International Conference on Transparent Optical Networks (ICTON);2024-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3