Abstract
A laboratory study is carried out to characterize the effect of basicity (varying 1.5–3.5) on magnetite iron ore pellets containing TiO2 (content 5%). Green pellets are made by the laboratory scale balling disc and roasted at a horizontal tube furnace with 1220 °C. Thermogravimetric analysis (‘TG’) is used to analyze the thermal decomposition of green pellets. X-ray diffraction (‘XRD’), scanning electron microscope and energy dispersive spectroscopy (‘SEM-EDS’) are utilized to systematically analyze the phase composition, microstructure and elemental distribution of the pellets. The findings show that as the basicity increases the porosity increases first and then decreases while the compressive strength is opposite to porosity to decrease first and then increases. With the increases of basicity, CaO responded with Fe2O3 and TiO2 to form CaFe2O4, Ca2Fe2O5 and CaTiO3. ‘TG’ find basicity has a negative effect on pellet oxidation. Factsage7.1 software shows that with the increase of basicity, the liquid content increases. The ‘SEM-EDS’ result present that CaTiO3 is formed around hematite, impeding the hematite connection, increasing porosity and reducing compressive strength. Being depend on the experimental results, a schematic of the oxidation mechanism is presented, providing the theoretical foundations for the study of high basicity pellets.
Subject
Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献