Effects of annealing temperature on the comprehensive properties of ultrathin niobium strips

Author:

Wang Jian Guo,Wang Zhen Hua,Liu Yuan Ming,Wang Tao,Huang Qing Xue

Abstract

Ultrathin niobium strips with thicknesses of 20, 30, and 40 µm were prepared by an accumulative roll process. The evolution of the microstructure, texture and mechanical properties of ultrathin Nb strips with different thicknesses at different annealing temperatures was studied by an electronic universal tensile testing machine and EBSD analysis. The results show that the whole process of grain recovery, recrystallization, complete recrystallization, and grain growth occurs with increasing annealing temperature. The complete recrystallization temperature increased as the thickness increased, and ultrathin niobium strips with thicknesses of 20 µm and 30 µm were recrystallized at 1050 °C, while the 40 µm thick sample was recrystallized at 1150 °C. Furthermore, to further characterize the size effect under extremely thin thicknesses, the 20 µm ultrathin niobium strip was analyzed in detail. It was found that the texture in the cold rolling state is mainly dominated by texture 〈111〉 ND. With increasing annealing temperature, the orientation density of the γ texture 〈111〉 ND orientation density gradually decreased, but the {111} 〈110〉 texture remained the main texture. It is noteworthy that the tensile strength of the ultrathin niobium strip decreases as the annealing temperature increases, but the elongation rate is still generally low, and the tensile strength of the ultrathin niobium strip indicates that the size effect is effectively ‘the smaller, the stronger’.

Funder

the National Natural Science Foundation of China

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3